Mevzubahis vatansa gerisi teferruattır.

Altın Oran Üzerine yazılmış bir proje çalışması…

imagesCA6RMRQA

“Not:Altın oran lise matematik müfredatında bir proje konusudur. Araştırmacı öğrenci için hazırladığım bu taslağın 1-1 kopya edilmemesini önemle rica ediyorum.”

Tarihçe:
Altın Oran, matematikte ve fiziksel evrende ezelden beri var olmasına rağmen, insanlar tarafından ne zaman keşfedildiğine ve kullanılmaya başlandığına dair kesin bir bilgi mevcut değildir.

 Tarih boyunca birçok defa yeniden keşfedilmiş olma olasılığı kuvvetlidir.

Leonardo da Vinci’nin günlüklerinin birinde bulunan, insan ve doğayı birbiriyle ilgilendirme-bütünleştirme çalışması için bir dönüm noktası kabul edilen ve insan vücudundaki oranları gösteren Vitruvius Adamı çalışması dır(1492).Euclid (M.Ö. 365 – M.Ö. 300), “Elementler” adlı tezinde, bir doğruyu 0.6180399… noktasından bölmekten bahsetmiş ve bunu, bir doğruyu ekstrem ve önemli oranda bölmek diye adlandırmıştır. Mısırlılar keops Piramidi’nin tasarımında hem pi hem de phi oranını kullanmışlardır. Yunanlılar, Parthenon’un tüm tasarımını Altın Oran’a dayandırmışlardır. Bu oran, ünlü Yunanlı heykeltraş Phidias tarafından da kullanılmıştır. Leonardo Fibonacci adındaki İtalyan matematikçi, adıyla anılan nümerik serinin olağanüstü özelliklerini keşfetmiştir fakat bunun Altın Oran ile ilişkisini kavrayıp kavramadığı bilinmemektedir. Leonardo da Vinci, 1509′da Luca Pacioli’nin yayımladığı İlahi Oran adlı bir çalışmasına resimler vermiştir. Bu kitapta Leonardo Leonardo da Vinci tarafından yapılmış Five Platonic Solids (Beş Platonik Cisim) adlı resimler bulunmaktadır. Bunlar, bir küp, bir Tetrahedron, bir Dodekahedron, bir Oktahedron ve bir Ikosahedronun resimleridir. Altın Oran’ın Latince karşılığını ilk kullanan muhtemelen Leonardo da Vinci ‘dir. Rönesans sanatçıları Altın Oran’ı tablolarında ve heykellerinde denge ve güzelliği elde etmek amacıyla sıklıkla kullanmışlardır. Örneğin Leonardo da Vinci, Son Yemek adlı tablosunda, İsa’nın ve havarilerin oturduğu masanın boyutlarından, arkadaki duvar ve pencerelere kadar Altın Oran’ı uygulamıştır. Güneş etrafındaki gezegenlerin yörüngelerinin eliptik yapısını keşfeden Johannes Kepler (1571-1630), Altın Oran’ı şu şekilde belirtmiştir: “Geometrinin iki büyük hazinesi vardır; biri Pythagoras’ın teoremi, diğeri, bir doğrunun Altın Oran’a göre bölünmesidir.” Bu oranı göstermek için, Parthenon’un mimarı ve bu oranı resmen kullandığı bilinen ilk kişi olan Phidias’a ithafen, 1900′lerde Yunan alfabesindeki Phi harfini Amerika’lı matematikçi Mark Barr kullanmıştır. Aynı zamanda Yunan alfabesindekine karşılık gelen F harfi de, Fibonacci’nin ilk harfidir.

Altın Oran, bir sayının insanlık, bilim ve sanat tarihinde oynadığı inanılmaz bir roldür. Phi, evren ve yaşamı anlama konusunda bizlere yeni kapılar açmaya devam etmektedir. 1970′lerde Roger Penrose, o güne kadar imkânsız olduğu düşünülen, “yüzeylerin beşli simetri ile katlanması”nı Altın Oran sayesinde bulmuştur.

Leonardo Fibonacci ve Liber Abaci:

Leonardo Fibonacci, (Pisalı Leonardo, Leonardo Pisano d. 1170, ö. 1250), yaygın olarak ismiyle Fibonacci diye anılan, orta çağın en yetenekli matematikçisi olarak kabul edilen İtalyan matematikçidir.Fibonacci modern çağda en fazla Hint-Arap Sayılarını Avrupa’ya getirmesiyle ve 13. yüzyıl başlarında yayınlanan Liber Abaci isimli hesaplama yöntemleri kitabıyla tanınır. Liber Abaci’de bir örnek olarak yer alan modern sayılarla hesaplanmış kendi adıyla anılan sayı dizisi Fibonacci Dizisi olarak anılmaktadır.Sadece Fibonacci dizisi ve özellikleri ile ilgili kitaplar hatta haftalık düzenli yayınlanan matematik dergileri bile bulunmaktadır.

Leonardo tahmini 1170 yılında İtalya’nın Pisa şehrinde doğdu. Kesin doğum tarihi bilinmemektedir. Babası Guglielmo’nun takma adı Bonaccio idi ve bu ad, iyi tabiatlı veya sade ruhlu anlamına gelmekteydi. Annesi Alessandra Leonardo 9 yaşındayken öldü. Leonardo babasının takma adını miras olarak aldı. İtalyanca Filius Bonacci, Bonacci’nin oğlu anlamına gelmekteydi ve Leonardo bu nedenle Fibonacci diye anılmaya başlandı.

Babası Guglielmo Cezayir’in Béjaïa limanı ile İtalya’nın Bugia kenti arasında bir ticaret postasını idare etmekteydi. Genç bir çocuk olan Leonardo babasına yardım etmek için onunla seyahat ederdi. Burası Leonardo’nun Hint-Arap sayı sistemini öğrendiği yerdir.

Fibonacci Hint-Arap sayıları ile aritmetik işlemler yapmanın Roma rakamları ile hesap yapmaktan çok daha basit ve verimli olduğunu gördü. Leonardo bütün Akdeniz bölgesini gezdi ve dönemin önde gelen Arap matematikçiler ile çalışma olanağı buldu. Leonardo yaklaşık olarak 1200 yıllarında bu seyahatinden döndü. 1202 yılına gelindiğinde 32 yaşında, öğrendiklerini “abaküs kitabı” veya “hesaplama kitabı” anlamına gelen Liber Abaci isimli eserinde topladı. Yayınladığı bu eserinde Hint-Arap Sayı Sistemi’ni avrupa’ya duyurmuştur.Liber Abaci’de (1202) Fibonacci, modus indium (Hintlilerin Yöntemi) adını verdiği ve günümüzde Arap-Hint sayıları diye bilinen modern ondalık sayı sistemini tanıtır. Bu kitap gündelik hayatta ticari defter tutma, ölçü birimlerini çevirme, faiz hesaplama, para bozma ve değiştirme ve benzeri işlemlerde önemini göstermiştir. Kitap Avrupa’da tahsilli insanlar arasında hızlı bir şekilde yayılmış ve Avrupa’nın müspet bilimde ilerlemesine önemli etkileri olmuştur.

Liber Abaci’de ayrıca kapalı bir ortamdaki bir tavşan ailesinin artışını, her tavşan çiftinin bir ay sonra bir yavru yapıp onun da 1 ay sonra 1 yavru yapacağı gibi ideal varsayımlar altında hesplanmasını gösterir. Bu problemin çözümünde tavşan çiftlerinin sayısının artışını gösteren sayı dizisi Fibonacci sayıları, diziye de Fibonacci dizisi denir. Bu sayı dizisi 6. yüzyıldan beridir Hintli matematikçiler tarafından bilinmekteydi ancak Avrupa’ya ilk olarak Fibonacci tarafından tanıtılmıştır. Konu aşağıda detaylıca araştırmacıya açıklanmıştır.

Leonardo matematik ve bilim ile ilgilenmeyi seven Roma İmparatoru II. Frederick ile dost oldu. Tarih kitapları bizlere 1240 senesinde Pisa cumhuriyeti kendisini Leonardo Bigollo namıyla taltif edip onurlandığını ve maaş bağlandığını bildirmektedir.

19. yüzyılda Pisa’da Fibonacci heykeli yapılmış ve buraya dikilmiştir. Heykel bugün Camposanto’nun batı galerisinde ve Piazza dei Miracoli tarihi mezarlığında bulunmaktadır.

Fibonacci dizisi:

Daha önce 6. yüzyılda Hintli matematikçiler tarafından bulunmuş olan bu sayı dizisi Liber Abaci kitabında tavşanların üremesiyle ilgili problemin hesaplanması sonucu Fibonacci tarafından 1202 yılında ortaya konmuştu. Dizinin ilk sayı değeri 0, ikincisi 1 ve her ardışık elemanı da önceki iki elemanın sayı değerinin toplamı alınarak bulunur ve bu halde 0, 1, 1(1+0), 2(1+1), 3(2+1), 5(3+2), 8(5+3), 13(8+5),… şeklinde artar.

 images
Altın Oran:

 Altın oran, doğada sayısız canlının ve cansızın şeklinde ve yapısında bulunan özel bir orandır. Doğada bir bütünün parçaları arasında gözlemlenen, yüzyıllarca sanat ve mimaride uygulanmış, uyum açısından en yetkin boyutları verdiği sanılan geometrik ve sayısal bir oran bağıntısıdır. Doğada en belirgin örneklerine insan vücudunda, deniz kabuklularında ve ağaç dallarında rastlanır. Platon’a göre kozmik fiziğin anahtarı bu orandır. Altın oranı bir dikdörtgenin boyunun enine olan “en estetik” oranı olarak tanımlayanlar da vardır.

Eski Mısırlılar ve Yunanlılar tarafından keşfedilmiş, mimaride ve sanatta kullanılmıştır. Göze çok hoş gelen bir orandır.Bir  doğru parçasının (AB) Altın Oran’a uygun biçimde iki parçaya bölünmesi gerektiğinde, bu doğru öyle bir noktadan (C) bölünmelidir ki; küçük parçanın (AC) büyük parçaya (CB) oranı, büyük parçanın (CB) bütün doğruya (AB)oranına eşit olsun.

Altın Oran, pi (π) gibi irrasyonel bir sayıdır ve ondalık sistemde yazılışı; 1.618033988749894… dür. (noktadan sonraki ilk 15 basamak). Bu oranın kısaca gösterimi: olur. Altın Oranın ifade edilmesi için kullanılan sembol, PHI yani Φ’dir.

Fibonacci Sayıları ve Altın Oran:

Fibonacci sayıları (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765… şeklinde devam eder) ile Altın Oran arasında ilginç bir ilişki vardır. Dizideki ardışık iki sayının oranı, sayılar büyüdükçe Altın Oran’a yaklaşır.
Fibonacci ardışıkları, Altın Oran ilişkisi yorumlamasıdır.Bundada oran ne olursa olsun her oranın değeri 1.618 dir ,değişmez

Altın Oran’ın Elde Edilmesi:

Altın Oran’ı anlatmanın en iyi yollarından biri, işe bir kare ile başlamaktır.

Bir kareyi tam ortasından iki eşit diktörgen oluşturacak şekilde ikiye bölelim.

Dikdörtgenlerin ortak kenarının, karenin tabanını kestiği noktaya pergelimizi koyalım. Pergelimizi öyle açalım ki, çizeceğimiz daire, karenin karşı köşesine değsin, yani yarı çapı, bir dikdörtgenin köşegeni olsun.

Sonra, karenin tabanını, çizdiğimiz daireyle kesişene kadar uzatalım.

Yeni çıkan şekli bir dikdörtgene tamamladığımızda, karenin yanında yeni bir dikdörtgen elde etmiş olacağız.

İşte bu yeni dikdörtgenin taban uzunluğunun (B) karenin taban uzunluğuna (A) oranı Altın Oran’dır. Karenin taban uzunluğunun (A) büyük dikdörtgenin taban uzunluğuna (C) oranı da Altın Oran’dır. A / B = 1.6180339 = Altın Oran C / A = 1.6180339 = Altın Oran

Elde ettiğimiz bu dikdörtgen ise, bir Altın Dikdörtgen’dir. Çünkü uzun kenarının, kısa kenarına oranı 1.618 dir, yani Altın Oran’dır.

Artık bu dikdörtgenden her bir kare çıkardığımızda elimizde kalan, bir Altın Dikdörtgen olacaktır.

İçinden defalarca kareler çıkardığımız bu Altın Dikdörtgen’in karelerinin kenar uzunluklarını yarıçap alan bir çember parçasını her karenin içine çizersek, bir Altın Spiral elde ederiz. Altın Spiral, birçok canlı ve cansız varlığın biçimini ve yapı taşını oluşturur.Buna örnek olarak Ayçiçeği bitkisini gösterebiliriz. Ayçiçeğinin çekirdekleri altın oranı takip eden bir spiral oluşturacak şekilde dizilirler.
Bu karelerin kenar uzunlukları sırasıyla Fibonacci sayılarını verir.

Beş Kenarlı Simetri:

PHI’yi göstermenin bir yolu da, basit bir beşgen kullanmaktır. Yani, birbiriyle beş eşit açı oluşturarak birleşen beş kenar. Basitçe PHI, herhangi bir köşegenin herhangi bir kenara oranıdır.

AC / AB = 1,618 = PHI Beşgenin içine ikinci bir köşegen ([BD]) çizelim. AC ve BD birbirlerini O noktasında keseceklerdir.

Böylece her iki çizgi de, bir noktadan ikiye bölünmüş olacaktır ve her parça diğeriyle PHI oranı ilişkisi içindedir. Yani AO / OC =Phi, AC / AO = Phi, DO / OB = Phi, BD / DO = Phi. Bir diğeri ile bölünen her köşegende, aynı oran tekrarlanacaktır.

Bütün köşegenleri çizdiğimiz zaman ise, beş köşeli bir yıldız elde ederiz.Bu yıldızın içinde, ters duran diğer bir beşgen meydana gelir (yeşil). Her köşegen, başka iki köşegen tarafından kesilmiştir ve her bölüm, daha büyük bölümlerle ve bütünle, PHI oranını korur. Böylece, içteki ters beşgen, dıştaki beşgenle de PHI oranındadır.

Bir beşgenin içindeki beş köşeli yıldız, Pentagram diye adlandırılır ve Pythagoras’ın kurduğu antik Yunan Matematik Okulu’nun sembolüdür. Eski gizemciler PHI’ yi bilirlerdi ve Altın Oran’ın fiziksel ve biyolojik dünyamızın kurulmasındaki önemli yerini anlamışlardır.Bir beşgenin köşegenlerini birleştirdiğimizde, iki değişik Altın Üçgen elde ederiz. Mavi üçgenin kenarları tabanı ile ve kırmızı üçgenin tabanı da kenarı ile Altın Oran ilişkisi içerisindedir.

PHI, kendini tekrarlayan bir özelliğe de sahiptir. Altın Orana sahip her şekil, Altın Oranı kendi içinde sonsuz sayıda tekrarlayabilir. Aşağıdaki şekilde, her beşgenin içinde meydana gelen pentagramı ve her pentagramın oluşturduğu beşgeni ve bunun makro kozmik ve mikro kozmik sonsuza kadar Altın Oranı tekrarlayarak devam ettiğini görebiliriz.

Beşgen, Altın Oranı açıklamak için oldukça basit ve iyi bir yöntem olmakla birlikte, bu oranın belirtilmesi gereken çok daha karmaşık ve anlaşılması zor bir takım özellikleri de vardır. Altın Oran daha iyi anlaşıldıkça, biyolojik ve kozmolojik birçok büyük uygulama örnekleri daha iyi görülebilecektir.

Büyük Piramit ve Altın Oran:

Büyük Piramit, yatay bir düzlem üzerinden ölçüm yapıldığında sahip olduğu kare şeklindeki çevre uzunluğunun aynına, düşey bir düzlem üzerinde yapılan ölçümde de bu defa daire şeklinde olmak üzere sahiptir.Birkaç ilginç bilgi olmak kaydıyla şu gerçeklere de kısaca bir göz atalım: Keops Piramidi’nin gerçek taban kenar uzunluğunun (230.3465m) 8 katı ya da çevre uzunluğunun iki katı, boylamlar arasındaki 1 dakikalık açının ekvatordaki uzunluğunu vermektedir. Piramitin kenar uzunluğunun, ekvatordaki 1 dakikalık mesafenin 1/8 ine eşit olması ve piramit yüksekliğinin 2 nin 1/8 ine eşit olması korelasyonunu irdelememiz, örneklemeyi evrensel boyutlara taşıdığımızda, dünya ile evrenin Pi ve Altın Oran sabitlerinin ilişkilerini algılamada küçük bir girişim, samimi bir başlangıç sayılabilir.Şunu akılda tutmak gerekir ki; piramitin kenar uzunluğunun 230.3465m olması tamamen tesadüf de olabilir. Fakat karşılıklı ilişkiler yenilerini doğuruyor ve bunlara yenileri ekleniyorsa, bu korelasyonların kasti düzenlenmiş olduğu ihtimali de ciddi olarak dikkate alınmalıdır.

Diğer Örnekler:

Ayçiçeği’nin merkezinden dışarıya doğru sağdan sola ve soldan sağa doğru taneler sayıldığında çıkan sayılar Fibonacci Dizisinin ardışık terimleridir. Papatya Çiçeğinde de ayçiçeğinde olduğu gibi bir Fibonacci Dizisi mevcuttur. Fibonacci dizisinde ardışık el birönceki elamının oranı deki ardışık terimlerin farkıyla oluşan dizi de Fibonacci dizisidir. Ömer Hayyam üçgenindeki tüm katsayılar veya terimler yazılıp çapraz toplamları alındığında Fibonacci Dizisi ortaya çıkar. Çam kozalağındaki taneler kozalağın altındaki sabit bir noktadan kozalağın tepesindeki başka bir sabit noktaya doğru spiraller (eğriler) oluşturarak çıkarlar. İşte bu taneler soldan sağa ve sağdan sola sayıldığında çıkan sayılar, Fibonacci Dizisi’nin ardışık terimleridir.Bitkilerin yapraklarının dizilişinde bir Fibonacci Dizisi söz konusudur; yani yaprakların diziliminde bu dizi mevcuttur. Mimar Sinan’ın da birçok eserinde Fibonacci dizisi görülmektedir. Mesela Süleymaniye ve Selimiye Camileri’nin minarelerinde bu dizi mevcuttur.

İçinizde kalmasın, siz de yorum yazın.